Wenn es um die Berechnung von Integralen geht, dann ist die partielle Integration (auch Produktintegration genannt) ein wichtiges Werkzeug. Du kannst sie gewissermaßen als Umkehrung der Produktregel der Differentiation betrachten. Wie der auch häufig benutzte Name "Produktintegration" schon vermuten lässt, hilft dir die partielle Integration, wenn es sich um Integrale handelt, die ein Produkt von Funktionen beinhalten, also von folgender Form sind:
Wichtig hierbei ist, dass du eine der Teilfunktionen als Ableitung betrachtest (daher das ). Zu wissen, welchen der beiden multiplizierten Teilfunktionen du als das wählst, ist der schwierigste Teil, aber mit viel Übung und ein paar Tipps (s.u.) wirst du den Dreh schnell raushaben. Wenn du und richtig gewählt hast musst du dir nur noch folgende Formel merken, ein paar Ableitungen und Stammfunktionen berechnen und alles einsetzen: